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An adaptive fast multipole boundary face method using higher order elements based on the well-

known Burton-Miller equation is presented in this paper for solving the large-scale three-dimensional

exterior acoustic wave problems. The fast multipole boundary face method is referred to as FMBFM. In

the FMBFM, the boundary integration and field variables approximation are both performed in the

parametric space of each boundary face exactly the same as the B-rep data structure in standard solid

modeling packages. In this FMBFM, higher order elements are employed to improve the computational

accuracy and efficiency, and an adaptive tree structure is constructed to improve the efficiency of the

FMBFM. Numerical examples for large-scale acoustic radiation and scattering problems in this paper

demonstrated the accuracy, efficiency and validity of the adaptive FMBFM. Comparison study showed

that the FMBFM with high order elements out-performs the FMBFM with constant elements respect to

accuracy and CPU time at the same number of the nodes. In addition, the CAD models, even with

complicated geometry, are directly converted into the FMBFM models, thus the present method

provides a new way toward automatic simulation.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary face method (BFM) [1] based on the boundary
integral equation (BIE) is a numerical approach for solving field
problems. Several works have been published to improve or extend
the applicability of the BFM. Qin and Zhang [2] implemented the
BFM using finite elements defined in the parametric space of
boundary faces, which can be considered as a new implementation
of the boundary element method (BEM). Gu and Zhang [3] applied
the BFM to solve linear elasticity problems using B-spline element
interpolation. In [4], Zhou et al. combined the dual reciprocity
method (DRM) and the BFM to solve non-homogeneous potential
problems. Other applications of BFM can be found in [5–7].
However, few works have been done for acoustic problems in
the BFM.

In [8–13], the conventional BEM was applied for acoustic
exterior problems. Chen et al. [8] employed the combined
Helmholtz integral equation formulation (CHIEF) to study the
acoustic exterior problem in conjunction with the singular value
decomposition (SVD). They propose some suggestions for select-
ing those interior points were recommended in the paper.
If properly chosen, only two interior points may be needed.
ll rights reserved.

).
The CHIEF is proposed by Schenck [9]. In that method, some
additional Helmholtz integral relations were added in the interior
domain. This additional relation leads to an over-determined
system of equations, which can be solved using a least-squares
technique. In the conventional BEM, the error mainly comes from
two aspects. One is the computational error, and the other one is
the discretization error which contains the geometries error.
However, the BFM circumvent the geometries error in the
computation. In BFM, both boundary integration and interpola-
tion of field variables are performed in the parametric space of
each boundary face. The geometric data at Gaussian integration
points, such as the coordinates, the Jacobians and the out normals
are calculated directly from the faces rather than from element
interpolation. Thus the geometric errors are avoided. And as in
the BEM, only the boundary discretization is required in the BFM,
which implies a very low cost for mesh generation and prepro-
cessing [9,10]. For acoustic exterior problems, the radiation
condition at infinity can be satisfied automatically. Despite above
these advantages, however, in the BFM, the system matrix is
dense and unsymmetrical, requiring O(N2) memory and O(N3)
operations with N being the number of nodes, when the direct
solvers are used. As a result, the BFM is prohibitively expensive
when it is used to solve large-scale problems. Due to the memory
limitation of the computer resource, the number of the nodes in
our BFM program that could be analyzed only is no more than
3000. To circumvent this problem, this paper presents an adaptive
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fast multipole boundary face method (FMBFM) based on a weakly
singular integral forms’ Burton-Miller equation [10] for 3-D
radiation and scattering of acoustic problems. The weakly singu-
lar integral forms’ of the Burton-Miller equation is presented by
Liu [11]. And the boundary face method with Burton-Miller
equation is referred to as CHBFM in this paper. In the adaptive
FMBFM, the analytical integrations cannot be performed, thus we
employed higher order elements to improve the accuracy and
efficiency. The FMBFM has been integrated into the widely used
commercial CAD package UG-NX, and thus able to handle pro-
blems with complicated geometries. A tree data structure with
tight bounds, which is constructed by binary tree, is used to
hierarchically subdivide the computational domain into well-
separated cells and to invoke the multipole expansion approx-
imation. This adaptive tree structure is proposed by Zhang [14,15]
based on Anderson’s work [16]. In the adaptive tree, rectangular
boxes is used to instead of cubes, the boxes are subdivided
according to the shapes of the computational models. Therefore
the adaptive tree is more flexible in matching the geometry of the
computational domain. In addition, a more generalized Down-
ward Pass algorithm is designed to allow M2L among the child
boxes of a single parent box. The authors have demonstrated that
the adaptive tree structure together with an adaptive selection of
the expansion order is validity and could evidently improve the
computational efficiency, especially for the slender structure.

To the boundary integral equation (BIE) method, many
researchers have been devoted to improving the overall solution
efficiency for systems of equations. Various techniques have been
proposed to solve the large-scale problems, such as iterative
solvers, parallel computing or sub-domain techniques. To accel-
erate the matrix-vector multiplication, the fast multipole method
(FMM), which is regarded as one of the top 10 algorithms of the
20th century, was proposed by Rokhlin and Greengard [17,18].
The FMM in Rokhlin [17] was introduced as a fast solution
method for integral equations for two dimensional Laplace’s
equation, the multipole moments associated with a distant group
can be translated into the coefficients of the local explosion
associated with a local group. And then Greengard [18] developed
the FMM as an algorithm for the rapid evaluation of potential and
force fields in a large scale ensemble of charged particles. In
addition to Rokhlin’s work, Greengard introduced a hierarchical
decomposition of the domain geometry with a quad-tree in two
dimensions and an oct-tree in three dimensions to carry out
efficient and systematic grouping of particles. Employing the
FMM for the matrix–vector multiplications in iterative solvers,
the computing cost can be reduced from O(N2) to O(N). And there
are two main solvers for the FMM, one is the generalized
minimum residual (GMRES) method [19], the other is the con-
jugate gradient squared (CGS) method [20]. When the iterative
solvers is used, the operation counts for the BFM is reduced from
O(N3) to O(N2). Consequently, the total number of operation
counts for the fast multipole boundary element method (FMBEM)
or FMBFM with iterative solvers is reduce from O(N3) to O(N). And
also the memory requirement reduced to O(N). Therefore the
large-scale computations can be promised. The FMM has been
applied to elastostatic problems [21], crack problems [22], Helm-
hotlz problems [23], and incorporation with hybrid boundary
node method by Zhang [24]. A new version of the FMM for
Laplace problem was proposed by Greengard and Rokhlin [25],
which can huge improve the efficiency of the FMM. Many other
research works have been published to improve and extend the
applicability of the FMM [26–28].

The FMM has been applied to acoustic problems since 1990s.
A diagonal form FMM for Helmholtz equation was proposed by
Rokhlin [23]. Since then, lots of works have been made by many
researchers [29–37]. Chen et al. [29] employed the FMM to
accelerate the construction of influence matrix in the dual
boundary element methods (DBEM). This separable technique
promotes the efficiency in determining the influence coefficients.
Epton and Dembart [30] presented a concise summary of multi-
pole translations for 3-D Helmholtz equations. A more precise
error estimates introduced for the FMM was provided by Darve
[31]. A recurrence relations is developed by Chew [32], then was
extended by Gumerov and Duraiswami [33] to develop a general
recursive method for obtaining the translation matrices. The
method can provide a huge improvement in the efficiency of
the FMM. Shen [34] proposed an adaptive FMM for 3-D full space
acoustic problems. The adaptive FMM algorithm can be several
times faster than the non-adaptive one. Bapat [35] applied the
adaptive FMM for 3-D half space acoustic problems. Using the
half-space Green’s function, only the local expansion is different
from that for 3-D full-space FMM. The total CPU time and
memory storage are also reduced by about a half for large scale
half-space acoustic problems. Analytic integration of the moments
in the diagonal form FMM for 3-D acoustic problems was proposed
by Wu [36].

The paper is organized as follows: Section 2 mainly reviews
the BIEs and the BFM for the acoustic wave problems. In Section 3,
the multipole expansion formulations are described followed by
the adaptive tree structure in Section 4. In Section 5, several
numerical examples are given to demonstrate the accuracy,
efficiency and validity of the present FMBFM. The paper ends
with conclusions and discussions on future work in Section 6.
2. Review of the BIE formulations and the BFM

2.1. BIE formulations for acoustic wave problems

In 2-D or 3-D spaces, the governing equation for acoustic wave
problem is the Helmholtz equation which can be written as:

r2fðxÞþk2fðxÞ ¼ 0, xAE, ð1Þ

in which x is the field point, E is the acoustic domain, f(x) denotes
the total sound pressure at x, r2 denotes the Laplace operator,
k¼2pf/c denotes the wave number, f is the cyclic frequency, c is
the speed of sound in the acoustic medium.

The boundary conditions for the governing equation of acous-
tic wave problems can be described as:

Dirichlet type f¼f, 8xAS

Neumann type q¼ @f
@n ¼ q¼ ikcrvn, 8xAS,

Impedance type f¼ Zvn, 8xAS

8>><
>>: ð2Þ

where c denotes the sound velocity in medium. r is the mass
density. vn is the normal velocity. n is the outward normal. Z

denotes the specific acoustic impedance. The quantities with over
bars indicate given values. i¼

ffiffiffiffiffiffiffi
�1
p

. For the exterior acoustic
problem, the Sommerfeld radiation condition must be satisfied
at infinite field. It is:

lim
R�41

R
@f
@R
�ikf

����
����

� �
¼ 0, ð3Þ

where R is the distance from a fixed origin to a general field point.
f is the radiated wave in a radiation problem or the scattered
wave in a scattering problem.

The integral representation of the solution to the Helmholtz
equation is:

cðP0ÞfðP0Þ ¼

Z
S

GðP0,PÞqðPÞdSðPÞ�

Z
S

@GðP0,PÞ

@n
fðPÞdSðPÞ

þfI
ðP0Þ, ð4Þ



Fig. 1. Two types of boundary discretizations. (a) BFM elements, (b) BEM elements.
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here GðP0,PÞ ¼ eikr

4pr denotes the full space Green’s function of
Helmholtz problems, in which r¼9P�P09 is the distance between
source point P0 and filed point P. qðPÞ ¼ @fðPÞ

@n , fI(P0) denotes a
prescribed incident wave but it does not exist in radiation
problems. Coefficient c(P0) is described as:

cðP0Þ ¼

1 P0AE
1
2 P0AS,

0 P0AB

8><
>: ð5Þ

where E is the exterior region (acoustic medium). S denotes the
boundary which is smooth around P0. B is the interior region
(a body or scatterer).

To derive the hyper-singular BIE (HBIE), we take the derivative
of Eq. (4) with respect to the outward normal n0 at source point
P0. The following boundary integral equation is given:

cðP0Þ
@fðP0Þ

@n0
¼

Z
S

@GðP0,PÞ

@n0

@fðPÞ
@n

dSðPÞ�

Z
S

@2GðP0,PÞ

@n@n0
fðPÞdSðPÞ

þ
@fI
ðP0Þ

@n0
,P0AS, ð6Þ

here c(P0) is 1/2 if S is smooth around of the source point P0. Based
on the Burton-Miller equation in Ref. [10], a complex linear
combination (CHBIE) of the CBIE (4) and HBIE (6) is obtained to
yield a unique solution for all the wave numbers:

b
Z

S

@2GðP0,PÞ

@n@n0
fðPÞdSðPÞ

" #
þ

Z
S

@GðP0,PÞ

@n
fðPÞdSðPÞ

þcðP0ÞfðP0Þ ¼ b
Z

S

@GðP0,PÞ

@n0

@fðPÞ
@n

dSðPÞ

�

�cðP0Þ
@fðP0Þ

@n0

�
þ

Z
S

GðP0,PÞ
@fðPÞ
@n

dSðPÞþb
@fI
ðP0Þ

@n0

þfI
ðP0Þ8P0AS, ð7Þ

b¼ i/k is used as the imaginary coupling parameter of the Burton-
Miller’s formulation [38], k is the wave number.

In the Burton-Miller equation (7), the major difficulty is that
the BIE contains strong singular integral (integrand has a 1/r2

singularity) and hyper-singular integral equation (integrand has a
1/r3 singularity). Here a weakly singular integral form which
proposed by Ref. [11] is adopted to overcome this difficulty. In
this BIE, the singularity in the strong singular or hyper-singular
integral is regularized using a one-term or two-term subtraction,
respectively, thus we could calculate all the integrals directly.

2.2. The BFM for acoustic wave problems

As in the BEM, only the boundary discretization is required in
the BFM for solving acoustic wave problems. One of the essential
differences between BFM and BEM is that boundary elements are
built in different spaces, namely, elements used in BFM are
located in the two-dimensional parametric space of the bounding
surface, while in the BEM elements are located in the three-
dimensional physical space. In the BFM, the geometric data over
the elements are calculated directly from the surfaces using the
following map F:

f ðx,y,zÞ ¼ f ðxðt1,t2Þ,yðt1,t2Þ,zðt1,t2ÞÞ ¼ f ðt1,t2Þ x,y,zAO t1,t2AO,

ð8Þ

where f is the geometric map function of the parametric space to
physical surface, and t1, t2 are the parametric coordinates which are
constrained to the interval [0,1] mostly. O is the physical space, and
O is the parametric space corresponding to O. Through the
geometric map F, the outward normals at the locations on the
boundary, the shape functions and its derivatives can be constructed
in the parametric space O. The detailed description and integration
scheme can be found in Ref. [2].

To clearly show the differences of the discretization between
the BFM and BEM, their boundary meshes on the same cylinder
are shown in Fig. 1. The elements in BFM (Fig. 1(a)) keep exact
geometry, while the elements in BEM (Fig. 1(b)) are used to
approximate the geometry of the cylinder, thus introduces geo-
metric errors. The geometric errors may lead to accuracy loss,
which will be illustrated in the numerical examples in Section 4.

By dividing the boundary S into M elements and applying the
shape functions on the element, we have the following approx-
imations for variation of pressure and velocity:

fðPÞ ¼
XNE

k ¼ 1

NkðPÞfk ¼
XNE

k ¼ 1

Nkðt1,t2Þfk,

qðPÞ ¼
XNE

k ¼ 1

NkðPÞqk ¼
XNE

k ¼ 1

Nkðt1,t2Þqk, ð9Þ

where fk and qk denote the value of f and q at the kth node,
respectively. Nk(.) is the shape function associated with the kth
node. NE is the number of node in the element.

The discretized form of Eq. (7) can be obtained as the following
forms:

XM
j ¼ 1

XNE

a ¼ 1

haijfa ¼
XM
j ¼ 1

XNE

a ¼ 1

gaijqaþbi, for node i¼ 1,2,. . .N, ð10Þ

here bi is from the incident wave for the scattering problems, N

denotes the total number of nodes, and

haijfa ¼ b
R

Sj

@2GðPi ,PÞ
@nðPÞ@nðPiÞ

NaðPÞdSðPÞþ
R

Sj

@GðPi ,PÞ
@nðPÞ NaðPÞdSðPÞþsðPi,PaÞcðPiÞ

h i
fa

gaijqa ¼ b
R

Sj

@GðPi ,PÞ
@nðPiÞ

NaðPÞdSðPÞþ
R

Sj
GðPi,PÞNaðPÞdSðPÞ�sðPi,PaÞbcðPiÞ

h i
qa

8><
>:

ð11Þ

here the Sj denotes the element j, and if the ath node in the
element j coincide with the ith node, s(Pi,Pa)¼1; else s(Pi,Pa)¼0.
3. Review of multipole expansion formulations

The formulations of the multipole expansion for acoustic
problems are described in this section for 3-D case. More detailed
description can be found in Ref. [39].



Fig. 2. Conversion of the FMM: M2M, M2L, L2L translations.
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3.1. The multipole expansion formulations for Helmholtz

The fundamental solution Gðx,yÞ ¼ eikr

4pr for Helmholtz equation
in 3-D can be expanded into the following series:

Gðx,yÞ ¼
ik

4p
X1
n ¼ 0

ð2nþ1Þ
Xn

m ¼ �n

Om
n ðk,x�ycÞI

m
n ðk,y�ycÞ,9y�yc9o9x�yc9,

ð12Þ

In which, yc is an expansion point near y, and the function Im
n

and Om
n can be further described as:

Im
n ¼ jnðk9x9ÞY

m
n

x

9x9

 !
,

Om
n ¼ hð1Þn ðk9x9ÞY

m
n

x

9x9

 !
, ð13Þ

where I
m

n is the complex conjugate of Im
n . hð1Þn and jn are the nth

order spherical Hankel function of first kind and nth order
spherical Bessel function, respectively. Ym

n denotes the spherical
harmonics function which can be wrote as:

Ym
n ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþmÞ!

ðn�mÞ!

s
Pm

n ðcos yÞeimf, ð14Þ

here the coordinates of x in a spherical coordinate system is (r, y,
f). Pm

n is the associated Legendre function which is defined as:

Pm
n ðxÞ ¼ ð1�x2Þ

m=2 dm

dxm
PnðxÞ, ð15Þ

where Pn is the Legendre function.
With applying expansion (12), we can evaluate the integral

with kernel G(x, y) in Eq. (4) through the following equation:Z
Sc

Gðx,yÞqðyÞdSðyÞ ¼
ik

4p
X1
n ¼ 0

ð2nþ1Þ
Xn

m ¼ �n

Om
n ðk,x�ycÞMn,mðk,ycÞ,

9y�yc9o9x�yc9, ð16Þ

where Mn,m(k,yc) denotes the multipole moments centered at yc,
its form is:

Mn,mðk,ycÞ ¼

Z
Sc

I
m

n ðk,y�ycÞqðyÞdSðyÞ ð17Þ

3.2. Multipole conversion

When the multipole moments center shift from yc to yc0 , which
is called moment to moment (M2M) translation, the multipole
moments are translated according to the following form:

Mn,mðk,yc0 Þ ¼
X1

n0 ¼ 0

ð2n0 þ1Þ
Xn0

m0 ¼ �n0

Xnþn0

l¼ n�n0j j

n0 þn�l : even

ð�1Þm
0

�Wn,n0 ,m,m0 ,lI
�m�m0
l ðk,yc�yc0 ÞMn0 ,�m0 ðk,ycÞ ð18Þ

where Wn,n0 ,m,m0 ,l is calculated by the following formula:

Wn,n0 ,m,m0 ,l ¼ ð2lþ1Þin
0�nþ l n n0 l

0 0 0

� �
n n0 l

m m0 �m�m0

� �
, ð19Þ

and
� � �

� � �

� �
denotes the Wigner 3j symbol.

The local expansion for the G(x, y) integral in Eq. (4) can be
described as the following form:Z

Sc

Gðx,yÞqðyÞdSðyÞ ¼
ik

4p
X1
n ¼ 0

ð2nþ1Þ
Xn

m ¼ �n

Ln,mðk,y,xLÞI
m

n ðk,x�xLÞ,

ð20Þ
In the moment to local (M2L) translations, the local expansion
coefficients are given by the following form:

Ln,mðk,y,xLÞ ¼
X1

n0 ¼ 0

ð2n0 þ1Þ
Xn0

m0 ¼ �n0

Xnþn0

l¼ n�n0j j

n0 þn�l : even

�Wn0 ,n,m0 ,m,lN
�m�m0
l ðk,xL�ycÞMn0 ,m0 ðk,ycÞ, ð21Þ

for 9x�xL9o9yc�xL9, here xL is the local expansion center and Nm
n

is defined as:

Nm
n ¼ hð1Þn ðk9x9ÞY

m

n

x

9x9

 !
, ð22Þ

If the local expansion center shift form xL to xL0 , the form of the
L2L translation is:

Ln,mðk,y,xLÞ ¼
X1

n0 ¼ 0

ð2n0 þ1Þ
Xn0

m0 ¼ �n0

Xnþn0

l¼ 9n�n09

n0 þn�l : even

�Wn0 ,n,m0 ,�m,lI
m�m0
l ðk,xL0�xLÞLn0 ,m0 ðk,y,xLÞ, ð23Þ

M2M, M2L, L2L translations are illustrated in Fig. 2.
For computing the M2M, M2L and L2L translations of the

integral with kernel @Gðx,yÞ
@n Eq. (4), we replace Mn,m by Hn,m of which

the expression is:

Hn,mðk,ycÞ ¼

Z
Sc

@I
m

n ðk,y�ycÞ

@n
fðyÞdSðyÞ ð24Þ

For calculating the integrals in Eq. (6), similar translation can be
applied.

Finally, we substitute the above FMM formulations to Eq. (7),
for the ith node x, and the ath node which is in the jth element, the
related term in Eq. (7) can be evaluated using the local expansion:

haijfa or gaijqa ¼
ik

4p
X1
n ¼ 0

ð2nþ1Þ
Xn

m ¼ �n

Lm
n ðk,ya,xLÞ

I
m

n ðk,xLÞþb
@I

m

n ðk,xLÞ

@n0

" #
, ð25Þ

here x is far away from any point in element j. To calculate the
integral over the elements which are near the field point x, the
conventional Gaussian numerical integration method is applied in
this paper.
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4. The adaptive tree structure

In the FMM analysis for acoustic problems, a tree structure is
required to divide the geometry and to evaluate the integral. The
standard FMM algorithm uses an oct-tree. The oct-tree is constructed
by dividing the root cube enclosing the computational domain
boundary into smaller and smaller sub-boxes until the number of
elements in each sub-box is less than a given number. However, the
tree structure in our research is an adaptive tree with tight bounds
which is constructed by binary tree. In the FMM, the computational
cost mainly depends on the M2L translation. So one efficient way to
improve the efficiency is reducing the number of the M2L transla-
tions. In this paper, the FMM reduce the number of the M2L
translations by decreasing the depth of the adaptive tree. In this
process, an element is considered to be inside a box if the center of
the element locates inside the box. The adaptive tree structure in the
FMBFM with higher order elements can be described as follows:

Step 1: Initialization. A smallest box, which can contain the
domain of the entire computational model, is constructed by
searching the max and min values of x, y, z components of the
coordinates among all the element centers. This box is the root
box for constructing the tree structure.

Step 2: Constructing tree structure. The root box is subdivided
into approximately cubic boxes at level 1, and these boxes are
then subdivided into approximately cubes in the following sub-
divided. Stop dividing one box until the number of elements in
the box is less than a given number.

Step 3: Searching for the adjacent cells and interaction cells of
each cell.

After the above operation, an adaptive binary tree is con-
structed. This tree structure is based on the standard oct-tree
structure, but differs in the following aspects:
1.
 The rectangular boxes are used instead of cubes. It is believed
that a rectangular box is more flexible in matching structure.
2.
 A box in adaptive tree is split into child boxes based on its
shape as showing in Fig. 3. For each subdividing, the longest
side is considered and dividing first, and so on. Stop dividing
until the ending rule act.
3.
 The boxes are tightened at each subdivision step. In adaptive
tree, a smallest box, which is the tightened box, is used to
enclose the cluster of the boundary elements.
Fig. 3. Subdivision of a box.
4.
 A more generalized Downward Pass algorithm is designed. In
the Downward Pass, the tree is traversed from the level 2 to
leaves to compute the coefficients of local expansion. The local
expansion associated with a box C is the sums of two parts.
First, the L2L translation collects the coefficients of parent.
Second, the M2L translation collects the coefficients of multi-
pole expansion of the boxes which are the children of the
neighbors of C’s parent but are not adjacent to C. In the
Downward Pass based on the adaptive tree, the child boxes of
a single parent box (Fig. 3(a)) are included in the interaction
list. Thus the M2L translations can be used among the child
boxes of a single parent box. However, the standard algorithm
always treats the child boxes of a parent box as neighbors. This
is no longer valid for the adaptive tree.

The detailed description about the differences can be obtained
in Refs. [14,15]. The algorithms and procedures of standard FMM
can be found in Reference [39]. In the adaptive FMBFM, the
multipole and local moments associated with a box, which are
calculated directly from Eqs. (7), (17) and (24) at each level are
stored and reused to the full extent. The block diagonal precondi-
tioner used in the GMRES is calculated once, and then stored for
all iterations. These works lead to a lot of CPU time saving, and
they can further improve the efficiency of the FMBFM.

In the FMBFM, the expansion parameter p is given in the
following form:

p¼ kDþc0logðkDþpÞ ð26Þ

D is the diameter of the cell on which the expansions are calculated.
c0 is a number that depends on the precision of the arithmetic.

To compute the value of physical variable on domain field
points which are far away from the boundary, another similar
binary tree data structure is adopted to accelerate the integration.
5. Numerical examples

The adaptive FMBFM with quadratic discontinuous elements,
which are defined either on quadrilateral or on triangular, has
been implemented in a code written in Cþþ language and tested
by four acoustic wave problems in this section. All the computa-
tions are carried out on the same desktop computer with an
Intel(R) Dual-Core CPU (2.6 GHz) and 2 GB memory.

In all the numerical examples, the sound potential j we used
is complex sound potential. The maximum number of the quad-
ratic elements in leafs is 20. The multipole expansion terms p is
evaluated through the following equation:

p¼ kDþ5:0logðkDþpÞ
� 	

þ1, ð27Þ

where the �b c denotes the integer part. In the GMRES solver, we
stop the iteration when the relative error is less than 10�3.

To assess the accuracy of the adaptive FMBFM, we calculate the
error of nodal values. And the error is defined as following form:

error¼
1

9f9max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i ¼ 1

ðfa
i�f

r
i Þ

vuut , ð28Þ

where m is the number of the nodes. fa
i and fr

i are analytical
solution and numerical solution at node point i, respectively. 9f9max

is the maximum value among the analytical solutions.

5.1. Validation of the adaptive FMBFM with high order element

A pulsating sphere (Fig. 4) is employed as the first numerical
example to demonstrate validity of the adaptive FMBFM for



Fig. 4. A spherical body.

Fig. 5. Pressure at r¼4a from the pulsating sphere.

Fig. 6. Pressure at r¼4a from the scattering sphere at the wave number ka¼p.

Fig. 7. A box model.
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radiation problems in an infinite acoustic domain. The radius
of the pulsating sphere is a¼1, and the boundary condition for the
pulsating sphere is normal velocity v0¼1 and @f

@n ¼ ikrcv0 in
another form. Where i¼

ffiffiffiffiffiffiffi
�1
p

, r¼1.29 kg/m3 and c¼340.0 m/s.
The whole spherical boundary surface is discretized into 80
discontinuous quadrilateral quadratic elements which contain in
total 640 boundary nodes. For the radiation problem, the analy-
tical solution to this problem is available and is described as:

fðrÞ ¼
rcv0ðikaÞ

ika�1

a

r
eikðr�aÞ ð29Þ

in which r stands for the distance between the ball center and the
field point. The sound potentials for the nondimensionalized
wave numbers ka ranging from 0 to 10.0 with 100 wave number
steps at r¼4a are shown in Fig. 5. From Fig. 5, we identified
clearly that the results obtained by the adaptive FMBFM coincide
well with the results obtained by CHBFM and the analytical
solutions. It indicates that the truncation error introduced by
the fast multipole expansion is very small for the radiation
problems, and demonstrates that the adaptive FMBFM with
quadratic elements is stable and accurate.

Furthermore, a rigid ball model (Fig. 4) is plotted to verify the
adaptive FMBFM for scattering problems. As described before,
the radius of the sphere is a¼1, and centered at (0, 0, 0). For the
scattering problems from a sphere with radius a, the analytic
solution for the scattered potential at a distance r from the center
of the sphere and at an angle y from the direction of the incoming
wave is given by Ref. [40]:

fs
ðr,yÞ ¼

X1
m ¼ 0

�
imð2mþ1Þjm

0
ðkaÞ

hm
0
ðkaÞ

Pmðcos yÞhmðkrÞ ð30Þ

where Pm is the Legendre function of the first kind. hm denotes the
spherical Hankel function of the first kind. jm is the spherical
Bessel function of the first kind. The formulation of the unit
incident plane wave we used here is fI

¼e� ikx, and the rigid ball is
meshed with 80 discontinuous quadrilateral quadratic elements
(640 nodes). Fig. 6 shows the variation of sound potential f at a
distance r¼4a, which is plotted versus the polar angle y, when the
nondimensionalized wave numbers ka is a characteristic wave
number, ka¼p, at which wave number the CBIE usually suffers
from the non-uniqueness solution problem. From Fig. 6, we
identify again that the results obtained by the adaptive FMBFM
coincide with the results obtained by CHBFM and the analytical
solutions. Moreover, it demonstrates that the non-uniqueness
difficulty of acoustic problems at the characteristic frequency can
be circumvented by the adaptive FMBFM with CHBIE.
5.2. Performance study of the adaptive FMBFM with higher element

In order to further study the performances of the adaptive FMBFM
with higher elements, a pulsating box model (Fig. 7) with wave
number ka¼1.0 is used for illustrating the accuracy of the adaptive
FMBFM. The overall dimensions of the model are 2�10�2. The
pulsating box is formulated by prescribing the normal velocity on
the box surface produced by a pulsating sphere of radius a¼1. Thus
the boundary condition prescribed on the box is given as:

q¼
@fðrÞ
@n

: ð31Þ
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where f(r) is given in Eq. (29). This example is similar to one
illustrated example in Ref. [40].

To perform a comparative study, the maximum number of the
constant elements in leafs is set to be 80. We compare the relative
errors of nodal values of sound pressure obtained by the FMBFM
with constant elements and that of the FMBFM with quadratic
elements are shown in Fig. 8. The comparative results showed
that the results obtained by the adaptive FMBFM with quadratic
elements (black line) are more accurate than that obtained by the
adaptive FMBFM with constant elements (red line) when the
number of nodes is more than 1400. The errors obtained by the
adaptive FMBFM with quadratic elements decrease rapidly with
the increasing number of the nodes.

Fig. 9 shows the computational total CPU time used to solve
the pulsating box model. The total node numbers increase from
576 to 102,912. It can be seen from this figure that within the
same number of nodes, the computation speed of the adaptive
FMBFM with quadratic elements is of the same level with that of
the adaptive FMBFM with constant elements. It can be concluded
from Figs. 8 and 9 that the adaptive FMBFM with quadratic
elements is more efficient than the adaptive FMBFM with con-
stant elements for large-scale acoustic problems.
Fig. 8. The relative errors of nodal values for the pulsating box model. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 9. The total CPU time used to solve the pulsating box model.
5.3. Performance study of the multipole expansion for far field

evaluation

In this example, we study the efficiency of the multipole
expansion for far field evaluation. A radiating sphere (Fig. 4) of
radius a¼1, centered at (0, 0, 0) with wave number ka¼2.0 is
employed to test the accuracy and efficiency of the far field
evaluation. The radiation problem on spherical is solved by the
adaptive FMBFM with CHBIE. All the field points are distributed in
a plane x¼3.0 with the dimensions [�5.0, 5.0]� [0.0, 5.0] in y, z

directions, respectively. The total number of the field points is
277. And we use p0 as the multipole expansion term for far field
evaluation, p0¼p.

In this application, only the M2L translation is employed
for the far field evaluation. The errors obtained by directly
evaluation (BFM) and by the multipole expansion method
(FMM) are plotted in Fig. 10 and the CPU time consumed by
these two methods is illustrated in Fig. 11. In Figs. 10 and 11, the
black line marked by BFM denotes the results evaluated by the
conventional boundary face method and the red line marked
by FMM denotes the results evaluated by the fast multipole
expansion method.
Fig. 10. The relative errors of the field points’ values for far field evaluation.

Fig. 11. The CPU time used for far field evaluation. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)



Fig. 13. The sound pressure for the mechanical model.
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Fig. 12. A mechanical model meshed with 3554 elememts.
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In Fig. 10, the error level obtained by FMM approaches that
obtained by BFM with an increasing number of the node. The CPU
time consumed by the FMM is much less than that by the BFM at
the same number of nodes, which can be found in Fig. 11. This
example illustrates that the FMM is a very efficient tool for
accelerating the integration, and it is very suitable for the large-
scale computation.
5.4. A radiation problem on mechanical model

In the fourth example, the solution for the radiation problem on a
relatively complicated mechanical model is presented to further
demonstrate the applicability of the adaptive FMBFM for large-scale
problem. The model is constructed with boundary representation (B-
rep) data structure obtained from the commercial CAD software UG-
NX 4.0, and it is shown in Fig. 12. The overall dimensions of the
model are [�0.9, 0.9]� [0,1.575]� [�0.926, 0.926] in x, y, z direc-
tions, respectively. The boundary condition for the model is a uniform
normal velocity v0¼1.0 on the model surface, and @f

@n ¼ ikrcv0. The
wave number is k¼1.0. In total 3554 quadrilateral quadratic and
triangular quadratic elements (22,700 nodes) are employed to
discretize the model. The number of the field points in this example
is 189. And all the field points locate on the sphere surface with
radius equal to 5.0, center at (0, 0, 0). The distribution of sound
pressure on field points is shown in Fig. 13. The total CPU time used
for this example is 931 s. It demonstrates that the integration of the
adaptive FMBFM with the UG-NX is successful, and the presented
FMBFM can solve the problems with complicated geometry.
6. Conclusions and future work

In this paper, an adaptive fast multipole boundary face method
with quadratic elements based on the well-known Burton-Miller
equation is presented to solve the radiation and scattering
problems of exterior acoustic wave in 3-D. The results of the
numerical examples demonstrate that the accuracy, efficiency
and validity of the adaptive FMBFM for large-scale acoustic
radiation and scattering problems. Comparison study showed
that the FMBFM with quadratic elements out-performs the
FMBFM with constant elements respect to accuracy and efficiency
with employing the same number of the elements. In addition,
the CAD models, even with complicated geometry, are directly
converted into the FMBFM models. Thus the presented method
provides a new way for automatic simulation.

The adaptive FMBFM is an extension of the adaptive tree for
the fast mulipole hybrid boundary node method (FM-HBNM)
[14,15]. The FMBFM has been integrated into the widely used
commercial CAD package UG-NX. Thus it is able to handle
acoustic problems on complicated geometries. The application
of quadratic elements further improves the computational accu-
racy and efficiency. The adaptive tree with tight bounds, which is
constructed by a binary tree, is adopted in this paper. It uses
rectangular boxes instead of cubes, and the boxes are splitted
according to the shapes of the computational models in the
process of constructing the tree. Thus the adaptive tree is more
flexible in match the geometry of the computational model,
especially for the slender and shell-like structures.

It is noted that the FMM used in this paper is the original FMM
in [30]. The work for further improving the efficiency of the
present FMBFM by incorporating the new FMM proposed by
Rokhlin [23] with is ongoing. Moreover, a solution for problems
on multi-domains is also ongoing.
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